Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(96): 14197-14209, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37955165

RESUMO

Materials informatics (MI) has immense potential to accelerate the pace of innovation and new product development in biotechnology. Close collaborations between skilled physical and life scientists with data scientists are being established in pursuit of leveraging MI tools in automation and artificial intelligence (AI) to predict material properties in vitro and in vivo. However, the scarcity of large, standardized, and labeled materials data for connecting structure-function relationships represents one of the largest hurdles to overcome. In this Highlight, focus is brought to emerging developments in polymer-based therapeutic delivery platforms, where teams generate large experimental datasets around specific therapeutics and successfully establish a design-to-deployment cycle of specialized nanocarriers. Three select collaborations demonstrate how custom-built polymers protect and deliver small molecules, nucleic acids, and proteins, representing ideal use-cases for machine learning to understand how molecular-level interactions impact drug stabilization and release. We conclude with our perspectives on how MI innovations in automation efficiencies and digitalization of data-coupled with fundamental insight and creativity from the polymer science community-can accelerate translation of more gene therapies into lifesaving medicines.


Assuntos
Inteligência Artificial , Polímeros , Polímeros/química , Aprendizado de Máquina , Preparações Farmacêuticas , Informática
2.
Curr Biol ; 32(17): 3758-3772.e4, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35973432

RESUMO

Sweet and bitter compounds excite different sensory cells and drive opposing behaviors. However, it remains unclear how sweet and bitter tastes are represented by the neural circuits linking sensation to behavior. To investigate this question in Drosophila, we devised trans-Tango(activity), a strategy for calcium imaging of second-order gustatory projection neurons based on trans-Tango, a genetic transsynaptic tracing technique. We found spatial overlap between the projection neuron populations activated by sweet and bitter tastants. The spatial representation of bitter tastants in the projection neurons was consistent, while that of sweet tastants was heterogeneous. Furthermore, we discovered that bitter tastants evoke responses in the gustatory receptor neurons and projection neurons upon both stimulus onset and offset and that bitter offset and sweet onset excite overlapping second-order projections. These findings demonstrate an unexpected complexity in the representation of sweet and bitter tastants by second-order neurons of the gustatory circuit.


Assuntos
Proteínas de Drosophila , Paladar , Animais , Drosophila/fisiologia , Proteínas de Drosophila/genética , Neurônios/fisiologia , Paladar/fisiologia , Percepção Gustatória/fisiologia
3.
Neuron ; 96(4): 783-795.e4, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29107518

RESUMO

Mapping neural circuits across defined synapses is essential for understanding brain function. Here we describe trans-Tango, a technique for anterograde transsynaptic circuit tracing and manipulation. At the core of trans-Tango is a synthetic signaling pathway that is introduced into all neurons in the animal. This pathway converts receptor activation at the cell surface into reporter expression through site-specific proteolysis. Specific labeling is achieved by presenting a tethered ligand at the synapses of genetically defined neurons, thereby activating the pathway in their postsynaptic partners and providing genetic access to these neurons. We first validated trans-Tango in the Drosophila olfactory system and then implemented it in the gustatory system, where projections beyond the first-order receptor neurons are not fully characterized. We identified putative second-order neurons within the sweet circuit that include projection neurons targeting known neuromodulation centers in the brain. These experiments establish trans-Tango as a flexible platform for transsynaptic circuit analysis.


Assuntos
Técnicas de Rastreamento Neuroanatômico/métodos , Neurônios/fisiologia , Percepção Gustatória/fisiologia , Animais , Animais Geneticamente Modificados , Drosophila , Vias Neurais/fisiologia , Condutos Olfatórios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...